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Synopsis 

The self-step growth polymerization of RA, monomers in homogeneous, continuous flow 
stirred tank reactors (HCSTRs) is simulated under conditions of periodic feed concentration 
(with frequency o and amplitude a). By having periodic operation, the polydispersity index 
of the polymer is found to increase by about 35% over the values at steady state. Periodic 
operation of HCSTRs is found to lead to gelation only for certain values of the frequency and 
the dimensionless residence time 7;. Gelling envelopes have been obtained to give conditions 
under which HCSTRs should be operated. These envelopes can be described in terms of two 
critical dimensionless residence times, and 7f2 such that nongelling operation is always 
ensured when T*  < T$. For T* > T$, periodic operation always leads to gelation, and HCSTRs 
cannot be used. For T $  < T* < T$, the gelling behavior is found to depend on the functionality 
f; amplitude a, and the dimensionless residence time T*. 

INTRODUCTION 

It has generally been shown that nonsteady state operation of continuous 
reactors gives an improved performance compared to operation at steady 
state.14 A convenient way by which a given reactor is operated at unsteady 
state is to vary the feed concentration or the reaction temperature sinu- 
soidally with time. This technique adds one more tool to the repertoire of 
the polymer engineer to design a reactor-producing polymer of a specified 
molecular weight distribution. 

In a recent review, Meira3 has pointed out that even though several 
studies, including patents? have been reported on the periodic operation 
of chain-growth polymerizaton reactors, only have addressed them- 
selves to linear step growth polymerization. Neither of these, however, have 
considered the effect of forced oscillations in the feed concentration on the 
performance of the reactor when nonlinear step growth polymerization is 
taking place. It is well known that several polymers, including crosslinked 
elastomers, are now produced in continuous flow stirred tank reactors 
(CSTRs), because of their excellent heat transfer characteristics and other 
operational advantages. A study of forced oscillations in CSTRs carrying 
out nonlinear polymerization, therefore, would have considerable industrial 
importance, since it has been showngJO that severe limitations are placed 
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(because of gelation) on the conversions that can be achieved in such re- 
actors, and any increase in the conversion by the use of forced oscillations 
will be extremely useful. In this paper, step growth polymerization of RA, 
type multifunctional monomers (where a functional group A reacts with 
another A group) in isothermal, homogeneous continuous flow stirred tank 
reactors (HCSTRs, with perfect micromixing) is studied, with the concen- 
tration of the monomer in the feed stream varied sinusoidally. This study 
can easily be modified to account for bang-bang cycling of the feed concen- 
tration, imperfect micromixing of the reactor fluid elements, or the effect 
of nonisothermal operation, using concepts used for other systems: to reveal 
information on polymerization reactors with RAf feed concentrations varied 
periodically, which may be even more fascinating than those encountered 
in nonpolymerizing systems.1° 

FORMULATION 

Mass balance equations for RA, polymerization in the HCSTR shown in 
Figure 1 can easily be written as1, 

n = 2,3, - 
where k is the functional group reactivity, 3 is the mean residence time 
(= VlQ), t is the time, and [P,] represents the molar concentration of the 
n-mer P,  (having nf - 2 n  + 2 unreacted A groups) at time t, both inside 
the reactor as well as in the output stream (due to the well mixed condition). 
In eq. (11, [P,],(t) is the molar concentration of the monomer in the feed 
and is assumed to vary sinuoidally as 

- 
where [P,], is the time-average value of [P,],(t) given by 

The concentrations [P,,] are also functions of time, but their dependence on 
t is not explicitly written in eq. (1) as for [P,],(t). In writing eq. (11, it is 
assumed that the density is unchanged by reaction, the reactions are ir- 
reversible, and that no cyclization takes place. 
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Fig. 1. An HCSTR with constant volume and with constant volumetric inflow and outflow 
rates. No oligomer except P, (and diluent) is present in the feed. 

It is interesting to note that the equations characterizing periodic oper- 
ation of HCSTRs with random polymer crosslinking (by reacting together 
side groups on long polymer chains, or through unsaturation in the chain 
backbone) are quite similar9J2J3 to those given in eq. (11, and are given by 

It can easily be seen that eq. (1) reduces to eq. (4) as f -+ ~ 1 ,  or as molecular 
weights become large. Thus, periodic operation of HCSTRs with either po- 
lymerization of low molecular weight RAf monomers (with f small) or cross- 
linkingof high molecular weight RAfmonomers (with flarge) can be studied 
within the same framework. 

Equation (1) can be multiplied by n k  (12 = 0, 1, 2, - - - ) and summed up 
over all values of n appropriately, to give equations for the moments of the 
chain length distribution 

These equations can then be made dimensionless and written in terms of 
the following variables: 
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T = t/-6 (6a) 

The final equations for polymerization of RA, monomer are obtained as 

(7a) 

These may easily be solved with appropriate initial conditions, using the 
fourth-order Runge-Kutta algorithm. Corresponding equations for cross- 
linking can also be written. The time-average values of xi are given by 

with r usually taken large enough to ensure steady, periodic behavior. 
Equations (7b-d) reduce to the earlier equations'l for the case when non- 

periodic, steady-state feed concentrations are used. Also, eqs. (7) reduce to 
the corresponding equations' for f = 2 {with T*/ ( f  - 2)2 -+ (k/2)[Pl], 6 and 

Equation (7) can be simplified for the "steady-state nonperiodic" (denoted 
by subscript s) case when the feed to the HCSTR has a constant concen- 
tration [P,], and when the d l d r  terms are all zero. This leads to 

-- 

T* l ( f  - 2) + 0 ) .  

- 
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which are consistent with our earlier results" for nonlinear polymerization, 
as well as with the results' for f = 2. Again, corresponding equations for 
random crosslinking of RA, monomers can be written easily. 

A common set of initial conditions which may be used for integrating the 
differential equations in eq. (7) can be written as 

(10) IC1: 7 = 0: 
X' = 1, x2 = 1, x3 = 0, x4 = 1 

This would be the case when the HCSTR is filled with monomer at con- 
centration cpllo initially. An equally interesting initial condition (IC2) arises 
when the HCSTR is filled with pure solvent initially: 

IC2: 7 = 0: 
x1 = xp  = X Q  = x4 = 0 

(11) 

It  is obvious that irrespective of the initial conditions, identical results will 
be obtained for xi as r -+ co 

Equation - (7d) for RAfpolymerization, for the dimensionless first moment, 
A,/[Pllo, can be integrated analytically for IC1 as well as IC2. The following 
results are obtained: 

For ICl : 

a a d  e-r 
1 + 0 2 8 2  

x4 = 1 + ~- (sin(o8r) - 08 cos(08r)) + (12a) 1 + (OW 

For IC2: 

These can be substituted into eq. (7c) to give: 
ICl and IC2: 

A = T* 
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4r*x4 B(r)  = - 
f - 2 + 2r*x4 - 

with the appropriate expression for x4 used from eq. (12). Equation (13a) is 
a Riccati equation14 and, since no general analytical solutions are readily 
available, it is best solved numerically. 

RESULTS AND DISCUSSION 

The final set of coupled differential equations [eqs. (711 can be integrated 
numerically using the fourth-order Runge-Kutta method. Several checks 
have been made to ensure the correctness of the computer program. The 
numerically integrated results for x., [eq. (7d)I have been compared with 
their analytical counterpart [eq. (1211 for both the initial conditions IC1 and 
IC2. The two results are found to match up to the fourth decimal place for: 
(a) f = 3, a = 0.8, 0 0  = T, T* = 0.08; (b) f = 3, a = 0.8, o8 = T,  T* = 
0.05; and (c) f = 3, a = 0.8, oa = ~ / 2 ,  r* = 0.08. Several other cases also 
yielded identical results. In all the runs, the time period of oscillation was 
divided into 1000 steps for integration, i.e., AT = [27r/(w8)]/1000. Reduction 
of the value of A r  did not lead to any significant differences in the results. 
Further, results obtained numerically for IC1 and IC2 became identical at 
large values of r. 

Figures 2-5 give typical plots of how xl, x2,  x3 ,  and x4 (which characterize 
the product properties) from the HCSTR, vary with the dimensionless time 
r. Both IC1 and IC2 have been studied and the values of the dimensionless, 
independent parameters are f = 3, a = 0.8, 03 = 27r (i.e., time period for 

- 

"0 1 2 3 5 
-r 

Fig. 2. z ~ ( T )  for IC1 and IC2: a = 0.8, f = 3, T* = 0.05, og = 27r 
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0 1 2 3 L 5 
z 

Fig. 3. x2(r) for IC1 and IC2. Conditions same as in Figure 2. 

T is l), and T*  = 0.05. Similar results are also obtained for several other 
values of these independent parameters. It is observed that for T less than 
about 10, the variables characterizing the output stream do not vary sin- 
usoidally, and indeed, their amplitudes vary. However, after this initial 
“start-up” period, the values of xl-x4 vary sinusoidally with 7, with constant 
amplitudes. Thus, it takes some finite time for the reactor to attain steady 
periodic behavior. Also, both the ICs yield identical values of x1-x4 after 
the “start-up” period. For x4, eq. (12) also predicts such behavior since the 
terms involving e -T become negligible. 

The behavior shown in Figures 2-5, in which a “start-up” period is fol- 

-r 
Fig. 4. X J T )  for IC1 and IC2. Conditions same as in Figure 2. 
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1. 

0 1 2 3 L 5 z 
Fig. 5. ~ ~ ( 7 )  for IC1 and IC2. Conditions same as in Figure 2. 

lowed by a steady periodic operation of the reactor, is found only for certain 
values of the independent parameters, a, 08, and T*. For certain other 
combinations of these independent parameters, a “start-up” period is fol- 
lowed after some time, by gelation of the reaction mass with x 3  increasing 
progressively to infinity. Under such situations, steady periodic behavior 
is never realized, and HCSTRs are practically useless for polymerization. 

It is difficult to predict with certainty, in a numerical study such as this, 
whether gelation will occur after a long time, and whether what is presumed 
as steady periodic behavior of an  HCSTR is not really the beginning region 
of a delayed gelation. It was found, however, that for all cases of gelling 
encountered in this work, as the value of r increases, the peak value, x ~ , ~ ~ ~ ,  
of x 3  keeps on progressively increasing. In addition, the rate of increase of 
x ~ , ~ ~ ~  increases with r and very soon (e.g., at T ‘v 75 for f = 3, a = 0.8, 08 
= 27r, T* = 0.085), x 3  shoots up to 0.17 X the maximum value per- 
missible in the DEC 1090 computer. In contrast, in nongelling operation, 
the rate of increase of x ~ , ~ ~ ~  does not increase with r, even though the peak 
value itself may increase very slightly with T because of accumulation of 
errors in the numerical procedure. This criterion is, therefore, used to infer 
whether one has gelling or nongelling operation of HCSTRs. To confirm 
this further, the numerical integrations were carried out to values of T as 
high as 6000, and it was found that x 3  remained finite whenever the rate 
of increase of x ~ , ~ ~ ~  does not increase with T. 

After establishing a suitable criterion for deciding whether gelation oc- 
curs or not in HCSTRs under periodic operation, attention was focused first 
on the operation of these reactors under nongelling conditions. The primary 
aim was to find out whether any advantage can be derived by operating 
the reactor in this mode. Thereafter, conditions under which gelation is 
encountered are explored, this information being useful to determine when 
it is worthwhile to use HCSTRs for RA, polymerization. 
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To indicate the usefulness and increased flexibility that periodic operation 
gives to this system, Figures 6 and 7 have been drawn showing the effect 
off; a, 08, and T* on F,, F2 and F3 defined as 

F - - - 1  X 1 0 0  
- tS 1 ( 1 4 ~ )  

where 
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Fig. 7. F,, F,, and F3 as a function of w e  for a = 0.8. Values off and T* same as in Figure 
5 for curves 1, 3, 4, and 5. For curve 2, f = 4, T *  = 0.065. 

These represent the change over nonperiodic (with [Pll0 constant with 
time at[PJo) operation of the monomer conversion, number average chain 
length p,, (with monomer excluded from summation), and the polydispersity 
index p (with monomer excluded), respectively. The monomer was excluded 
from summations because it is generally flashed out from the monomer- 
polymer mixture. In the computation of ji, and jim Simpson’s rule was used 
to evaluate the average values of Z,’s [eq. @)I over one time period. The 

- 
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Simpson’s rule summations were performed after a sufficiently large value 
of T to ensure steady, periodic behavior. It is observed from Figures 6 and 
7 that the maximum deviations in F1, F2, and F3 occur as w e  -+ 0, and at 
high 03, nonperiodic steady state behavior is approached, i.e., the reactor 
acts as a filter. Figures 6 and 7 show that for f and a remaining constant, 
F2 and F3 increase with T*. For the cases studied, an increase of as much 
as 37.5% in the polydispersity index and 8.5% in the number average chain 
length (for f = 3, a = 0.8, T* = 0.045, w e  -t 0) is thus possible. F1, the 
percentage deviation in the monomer conversion, shows the reverse trend. 
An increase in a, the amplitude of oscillation, from 0.6 to 0.8 increases F3 
from about 18% to about 37.5%, other variables remaining constant. F3 
and F2 fall from as much as about 35% to about 7.5% and from about 8% 
to about 5%, respectively, on increasing f from 3 to 4 for constant a and 
T*. This indicates the substantially increased flexibility possible in the op- 
eration of HCSTRs using periodic variation of the feed concentration. 

Regions of gelling and nongelling operation and the effect of the variables 
f i  a, and T* on these regions is shown in Figures 8 and 9. These regions 
were explored numerically for f = 3, a = 0.6 and 0.8 and f = 4, a = 0.6 
and 0.8 for IC1. The numerical integrations were carried out till as high a 
value of T as 8000 in some cases, in order to ensure that gelation does not 
occur. It is found that the gelling-nongelling envelope for periodic operation 
of HCSTRs can be described in terms of two critical dimensionless residence 
times, T $  and T$ defined by 

0.25 
1 + 2/(f - 2) .r2 = 

-r* 
Fig. 8. Gelling-nongelling envelopes for f = 4, a = 0.8. 
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Nongelling 

Fig. 9. Gelling-nongelling envelopes for f = 3, a = 8 (---) and f = 3, a = 0.6 (- . -). 

When T* > .fz with periodic operation of HCSTRs, gelation always occurs 
irrespective of the value of a or 03. If T*  < rfl with periodic operation, 
nongelling operation is assured for all values of 03. For .fl I T *  5 ~ f ~ ,  it 
is found that gelation occurs below some value of 08 while, above this value, 
nongelling behavior is guaranteed. Checks were made at several points in 
the regions < T *  < .z2 and T *  > ~f~ to determine the presence of any 
other localized gelling and nongelling regions. For f = 3, a = 0.8 and T *  

= 0.06 and 0.08 (see Figs. 8 and 91, checks were made for 10 03 values 
ranging from 3 to 280 and at all these points the operation was indeed 
nongelling. Similar tests were made for f = 3, a = 0.6, T* = 0.05 for 08 
= 1.0 and 300. F or f = 3, a = 0.8 and T*  = 0.09 and 0.12 [5-r2 = 
0.08333 from eq. (16a)], the operation was gelling for 03 = 5, 25, and 45. 
Thus, it is felt that the behavior depicted in Figures 8 and 9 is correct and 
a single curve separates the 03 - T*  domain into gelling and nongelling 
regions. 

It is interesting to observe that the two critical residence times, ~f~ and 
7f2 for periodic operation of HCSTRs are related to the critical residence 
times for the case of nonperiodic steady state feed concentration, T&, ob- 
tained earlier" as 

Thus, .fZ is the same as the critical residence time when an HCSTR operates 
with a constant feed concentration of [PI],, and it is intuitively obvious that 
gelation will definitely occur when T *  > .Zz irrespective of a and 08. The 
other value, 7f1 corresponds to the following critical condition when the 
feed concentration is constant with time at the peak value: [p,1, (1 + a): 

k 0.25 
2 1 + 2/(f- 2) 
- ( f  - 212 [pllo (1 + a )  3, = 
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which gives 

This provides the lower limit of T* and it is not surprising that nongelling 
operation is ensured when ~ , 3  < .El. 

This procedure was also used for the initial condition IC2 and it was seen 
that the gelling-nongelling envelope found for IC1 is valid for IC2 as well. 
Again this is intuitively obvious because after the initial settling time (-10 
time periods in the case of Figs. 2-51, both the ICs give identical results for 
reactor performance. 

CONCLUSIONS 

The operation of HCSTRs using a sinusoidally varying feed concentration 
has been studied. A numerical criterion is first developed which establishes 
whether the reaction mass will ever gel or not. Values of the independent 
parameters are determined for which nongelling operation is ensured. Un- 
der these conditions, it is found that periodic operation can lead to higher 
values of monomer conversion, degree of polymerization as well as the 
polydispersity index. 
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